Bearing capacity and longterm performance of crushed concrete in highway structures

NVF Road Technology webinar 14.4.2025 Antti Kalliainen

About speaker

- A Lappish guy whos been lost at Southern part of Finland over a couple of decades, lives in Tampere.
- M.Sc. In Infrastructural engineering(2008) Tampere University of Technology
- Working at Ramboll as a specialist. The key competences are road and railway structures, especially materials/aggregates/pavements and bearing capacity and life cycle of structures.
- History:
 - 2008-2013 Tampere University of Technology, researcher
 - 2014-2018 Ramboll (Specialist) & Tampere University of Technology (researcher)
 - 2019→ Ramboll, Specialist

CONTACT Antti Kalliainen antti.kalliainen@ramboll.fi +358 (40) 6647644 Ramboll Kansikatu 5B 33100 Tampere Finland

Agenda

- Study in brief
- Test sites
- Examples of results
- "New" types of structures for crushed concrete
- Conclusions

Study in brief

- A study Ramboll conducted for Finnish Transport and Infrastructure Agency (FTIA).
- The aim of this study was to determine how crushed concrete has performed in road structures over the long term.
- Crushed concrete has been used in road structures in Finland since the mid-1990s, and some of the test sites have been monitored with FWD-measurements.
- This study included two highway projects from the mid/late 1990s and one project completed about five years ago, which used crushed concrete in its structures.
- In previous studies, the long-term monitoring has focused on tracking the development of the overall stiffness of the structure.
- The main content of this study is related to more detailed analysis of measurements taken from test structures and the investigation of the load-bearing capacity of the crushed concrete structure.

Study in brief

- FWD measurements were carried out in the selected sites during the summer of 2024. The structural thickness data of the sites were considered sufficiently accurate based on previous studies and registry information.
- Using the measured deflections and determined structural layer thickness data, back-calculations were performed to determine the stiffness modulus of the structural layers for the test sections.
- The obtained data were used for calculations with tool based on multi-layer theory (ERAPAVE) and with a software based on the finite element method (PLAXIS 3D). A cross-comparison between the methods was carried out to assess the reliability of the results.
- Based on the obtained results, the most suitable location for crushed concrete in road structures was determined to be the base course. It was also possible to define the sufficient thickness to crushed concrete layer to ensure the long-term functionality of the crushed concrete layer.
- Sensitivity analyses were performed with the selected assumptions for structure types corresponding to load classes 10.0; 25.0; and 60.0 (referring to Millions of ESALs).

Process for the study

Test site	E12 Metsäkylä-Sasi	E75 Järvenpää- Mäntsälä	E8 Nousiainen- Mynämäki		
Road address 3/203/4900-3/203/6625		4/109/1250-4/109/3925	8/106/500-8/106/6110		
Constructed in	1996	1998	2019		
Average daily traffic	ca. 11 000	ca. 24 500	ca. 5 000		
Average daily heavy traffic	ca. 870	ca. 2 030	ca. 900		

The sites E12 and E75 have been monitored more or less regularly since their construction. The site E8 has not been monitored before this study, but the crushed concrete sections built in the project were obtained from FTIA database Velho.

E12

Test site E12

Kuva 5. Vt 3, välillä Metsäkylä-Sasi 1996. Suunnitellut betonimurskerakenteet ja vertailurakenne.

GPR in 2012, pavement thickness ca. 120...140 mm. Pavement remixed in 2014 (in-situ rut-remix) Overlay in 2017. Remix in early May 2024. → Total pavement thickness 160...180 mm.

Test site E75

a) Betonimurskerakenne

Plv 36720...37080 ja plv. 37660...37920

b) Vertailurakenne

plv. 37930...39920

GPR in 2012, pavement thickness ca. 200 mm. Pavement remixed in 2013 Milling + Overlay in 2017. Remix in 2023. → Total pavement thickness 220...240 mm.

Example of results

• Back calculated moduli values for structural layers at test site E75.

Str	ucture				
Base course Embankment		Pavement	Base course	Embankment/ Road structure	Subgrade
CrC	Gravel	4376	1031	515	139
CrC	Quarry rock	4672	875	400	117
CrC	Concrete rock	4560	887	562	189
CrR	Gravel	3769	582	222	127

• Deflection basins at test site E75, quarry rock embankment.

Example of results

• Critical strains at test site E75.

Gravel embankment + crushed concrete										
Method	Pavement strain (um/m)		Compressive strain on top of base course (um/m)	Compressive strain on top of the subgrade(um/m)	Strain at the bottom of crushed concrete (um/m)					
	ε _{xx} ε _{yy}		ε _{zz}	ε _{zz} ε _{xx}		ε _{γγ}				
ERAPAVE	79 79		202	37	61	61				
PLAXIS	89 92		195	52 113		114				
Quarry rock embankment + crushed concrete										
ERAPAVE	65 65		161	38	57	57				
PLAXIS	71 72		140	40 52		50				
			Concrete rock embank	ment + crushed concrete						
ERAPAVE	78 78		225	149	60	60				
PLAXIS	81 83		189	43	56	54				
Gravel embankment + crushed rock aggregate										
ERAPAVE	80 80		198	46	82	82				
PLAXIS	90 93		135	55	131	133				

Ramboll

Defining new types of structures for crushed concrete

The assessed structure had an overall thickness of approximately 1.5...1.6 meters.

The modules for this assessment were selected based on the structural layer moduli back-calculated from the test sites. The selected modules are intentionally somewhat conservative to initially determine the minimum potential of crushed concrete structures in terms of load-bearing capacity.

(*Simulation VII is the comparison structure, which is entirely constructed of aggregates, and the moduli values for the unbound structural layers are based on the Finnish guidelines for road structure design.

	Structural layer	Pavement		Crushed concrete base course		Sub-base		Filtration/frost protection		Subgrade	
	Simulation	Thickness (mm)	Moduli value (MPa)	Thickness (mm)	Moduli value (MPa)	Thickness (mm)	Moduli value (MPa)	Thickness (mm)	Moduli value (MPa)	Thickness (mm)	Moduli value (MPa)
	I	200	3500	300	400	300	200	800	100	-	100
	II	200	3500	300	400	300	200	800	100	-	50
	III	200	3500	400	400	300	200	700	100	-	100
	IV	160	3500	300	400	300	200	800	100	-	100
	V	160	3500	400	400	300	200	700	100	-	100
mbol	VI	130	3500	400	400	300	200	800	100	-	100
	VTT	240	3500	300 (*	280 (*	300	200	800	100	_	100

The effect of pavement thickness on the deflection basin of a crushed concrete structure

The life cycle of new types of structures for crushed concrete

	Pavement strain (um/m)		Allowed number of ESALs (Million)		Paveme define deflectio (um	nt strain d from on basin (/m)	Allowed number of ESALs (Million)		
Simulation	PLAXIS	ERAPAVE	PLAXIS	PLAXIS ERAPAVE		ERAPAVE	PLAXIS	ERAPAVE	
I	113	110	72,1	81,3	119	121	57,1	52,9	
II	116	110	64,1	81,3	118	115	59,3	66,6	
III	114	108	69,3	88,3	114	119	69,2	57,1	
IV	146	143	22,8	24,9	139	143	28,3	24,9	
V	141	140	26,6	27,4	135	137	32,3	30,3	
VI	178	162	9,3	14,2	160	162	15,0	14,2	
VII	117	115	61,6	66,6	111	117	78,1	61,6	

Conclusions

- Based on the obtained results, it seems that a more compared to traditional load-bearing design, more advanced design methods can provide significantly more information about the load-bearing capacity of road structures.
- However, wider use of structural design would also require updating the fatigue models used to assess load-bearing capacity.
- By using high-quality, cohesive crushed concrete instead of unbound crushed rock aggregate in the base course, with a sufficiently thick layer (approximately 400 mm), it is possible to construct a road with comparable design life using a thinner overall pavement thickness. Even with the relatively conservative assumptions used in the study, the impact was equivalent to about one pavement layer/slab (40 mm).
- One notable observation was the E8 structure type BeM B, which utilized foam glass lightweight fill with the minimum cover depth as per guidelines (0.8 meters in Finland). In this case, the determined design life of the structure was significantly shorter (about 3.5 million ESALs) compared to otherwise consistent load class 10.0 structure (10 million ESALs).

Bright ideas. Sustainable change.

