

Roni Utriainen

POTENTIAL SAFETY EFFECTS OF LKA AND AEB SYSTEMS IN FINLAND

Nordic Traffic Safety Forum 2018 Åland, Finland

Terms

- LKA = lane keeping assistance
- AEB = automatic emergency braking
- ACC = adaptive cruise control
- LKA+AEB+ACC=Partially Automated Vehicle (PAV):
 - Lateral and longitudinal vehicle motion control
 - The driver is always in charge of the driving task.

After the presentation, you (should) know answers on...

- How the potential safety effects of PAV (LKA, AEB and ACC) were studied?
- How many fatal crashes PAV could have avoided?
- Why all of the crashes cannot be avoided by PAV?
- What are the possible paths to further increase the safety potential of PAV?

What and how was studied?

- How many fatal passenger car crashes could have been avoided, if conventional vehicles involved in the crash had been replaced by PAV?
- A crash-by-crash method: each crash is analysed individually
- Data: 506 in-depth investigated crashes in 2014-2016 in Finland
 > Systems' operational conditions were considered in the evaluation

LKA can operate, when..

- Lane markings are visible
- Weather is favourable
- No intended cause, attack of illness or overtaking

AEB can operate, when..

- > Vehicle speed \leq 60 km/h
- Weather is favourable
- No intended cause

Example 1

Head-on crash (2 passenger cars)

Visibility of lane markings: Fully visible lane markings

Weather:

Cloudy

Driver-related risks: No risks

Example 2

Single-vehicle crash (passenger car)

Visibility of lane markings: Lane markings covered by snow

Weather: Sunny

Driver-related risks: Driver's attack of illness

LKA prevents the crash!

LKA cannot prevent the crash!

Potential safety effects of PAV

System	Crash type	Prevented crashes by the systems	Prevented fatalities by the systems
LKA	single-vehicle	52 (30%) of 172	57 (30%) of 187
LKA	head-on	47 (24%) of 192	58 (25%) of 228
Total (LKA)		99 (27%) of 364	115 (28%) of 415
AEB+ACC	rear-end	15 (45%) of 33	15 (42%) of 36
AEB	intersection	19 (36%) of 53	20 (34%) of 58
AEB	pedestrian	13 (45%) of 29	13 (45%) of 29
Total (AEB+ACC)		47 (41%) of 115	48 (39%) of 123
-	other	0 of 27	0 of 30
Total	all crashes <	146 (29%) of 506	163 (29%) of 568

Crash reduction by LKA: 27% of single-vehicle and head-on crashes

- **73%** of crashes could not be avoided Why?
 - Driver-related risk in 47%
 - Intendedly caused crash
 - Driver's attack of illness
 - Poor visibility of lane markings in 41%
 - Deficiencies in markings
 - Covered by snow or ice
 - Unfavourable weather in 6%

Crash reduction by AEB & ACC: 41% of rear-end, intersection and pedestrian crashes

- **59%** of crashes could not be avoided Why?
 - Excessive vehicle speed in 44%
 - A motorbike in 10%
 - Unfavourable weather in 8%
 - Intendedly caused crash in 3%

Assumptions..

- Systems always turned on and 100% penetration rate
- A driver lets the systems operate safely
- Many systems' operational conditions are considered, but not all of them
- The focus is on maximum safety potential, which would not be the same as true effectiveness
 29% crash reduction = the best possible situation

How the crash reduction potential could be increased?

From partial automation towards highly automated driving

50% reduction in fatal crashes?

Requirements on infrastructure and vehicles:

- LKA exploits **digital lane markings** (HD maps)
- AEB and ACC with **intelligent speed assistance** (ISA)

With these measures, total crash reduction potential: 29% 🔿 50%

Even higher safety potential?

Requirements on infrastructure and vehicles:

- **System** is responsible of the driving
- Driver cannot **bypass** the system
- **Connected** vehicles and infrastructure
- Possible new risks may reduce the safety potential!

Conclusions

- PAV (e.g. LKA, AEB and ACC) can enhance road safety
 - Fatal crashes: -29%
- Driver's role is still important for safety in future
- Making these systems mandatory in new vehicles should be considered
 - A step towards Vision Zero and realising the potential