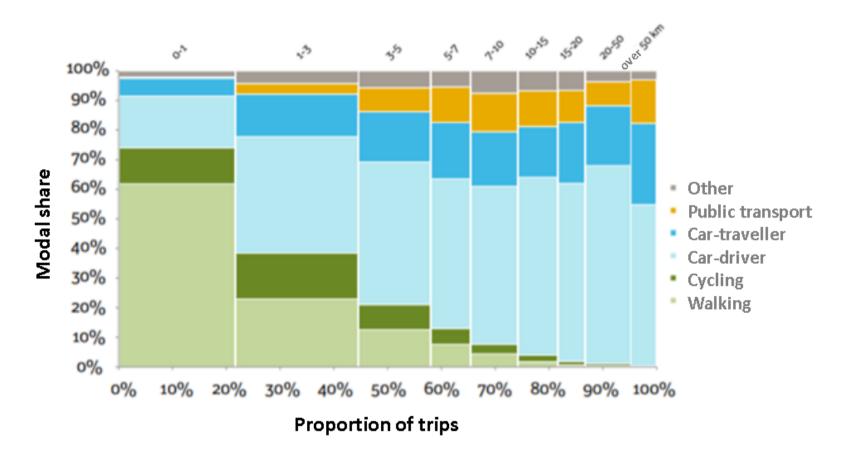
PIETARI PELTONEN

THE IMPACT OF WEATHER, ROAD CONDITIONS, TREATMENT AND MAINTENANCE ON WALKING AND CYCLING CONDITIONS

BACKGROUND


- Project initiator is Jaakko Klang from Centre for Economic Development, Transport and the Environment of Southwestern Finland (later ELY Centre)
- Consists of smaller parts
 - Master's thesis: literature review about walking and cycling conditions and "before-study". Results are used to form recommendations and suggestions. Winter 2017-2018.
 - Final title: The impacts of traffic environment, weather, road conditions and maintenance on walking and cycling travel
 - Follow-up study next winter
 - Test site in Turku region, but the goal is for the methods to be used elsewhere as well
 - Thesis supervisor: Milos Mladenovic, Aalto University School of Engineering
 - Thesis advisor: Erica Roselius, Ramboll Finland Oy
- Funding by ELY-Centre and Finnish Transport Agency

THE STUDY

BACKGROUND

(Somerpalo et al. 2015)

BARRIERS

- Too dangerous
- Too much traffic
- Bad weather
- Personal factors
- Too busy
- Lack of daylight
- Inconvenience

- Lacking sufficient fitness
- Uncomfortable
- Lack of time
- Being tired
- Too much effort
- Difficulties with trip chaining

WALKING AND CYCLING IN WINTER

- Cycling is clearly more common in summer than in winter
- Common reasons for not cycling in winter include darkness, cold temperatures, slipperiness, snow, wetness, precipitation and strong winds
- Winter cycling can be even safer due to cyclists being cautious and riding on lower speeds

WALKING AND CYCLING IN WINTER- SEASONAL BARRIERS

- Temperature
 - Temperature decreases, cycling levels decrease and walking levels increase
 - However, temperature often not the main reason
- Rainfall
 - Rain increases, cycling and walking levels decrease
 - Time of day: if in morning, drop is higher

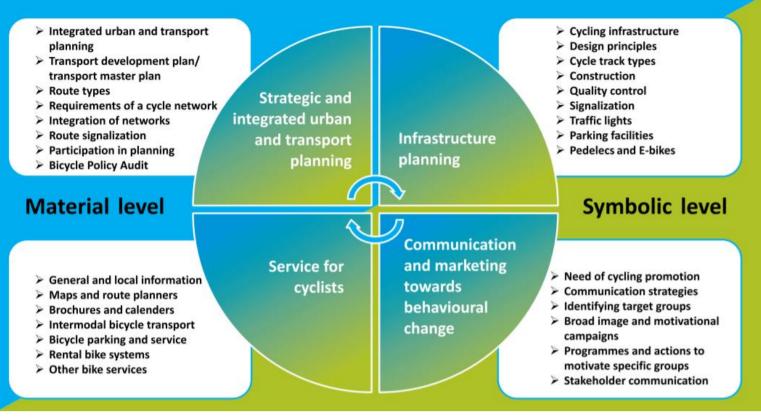
- Snow and/or ice on the road
 - As the amount of snow and/or ice on road increases, the modal share of cycling decreases, and walking increases
 - Cycling+walking relatively constant
- Accident risk is 5 to 10 times higher on snowy and/or icy road conditions
 - Slippery road conditions caused 60% of all bicycle accidents (hospital data from Östergötland)
 - In Umeå, the number is 40% (also 4 out of 10 accidents occur during winter)
 - 84% of accidents was at least partly caused by ice or snow

FACILITATORS FOR CYCLING

- Infrastructure and facilities
 - Bike lanes
 - Cycle tracks
 - Bike paths
 - Bicycle boulevards / neighbourhood greenways / living streets
 - Shared bus and bike lanes
 - Contraflow
 - Bicycle parking

- Networks
 - Coverage and continuity
 - Nodes: intersections, junctions, crossings
 - Bike boxes/advanced stop lines
 - Combined bike lane / turn lane
 - Intersection crossing marking

WALKING FACILITIES


- Sidewalk
- Multi-use paths
- Walking trails
- Broadwalks
- Pedestrian zones, malls, promenades

- Bollards, railings, gates, fences
- Street furniture
- Bridges, overran underpasses
- Crosswalks, signals
- Stairs

CYCLING PROMOTION AND PROGRAMS

- Programmatic interventions to increase cycling
 - Attitudes
- Promotional activities, media campaigns, educational events and other means
 - Cycling schools
 - Handouts
 - Breakfast for winter cyclists
 - Kilometre competitions

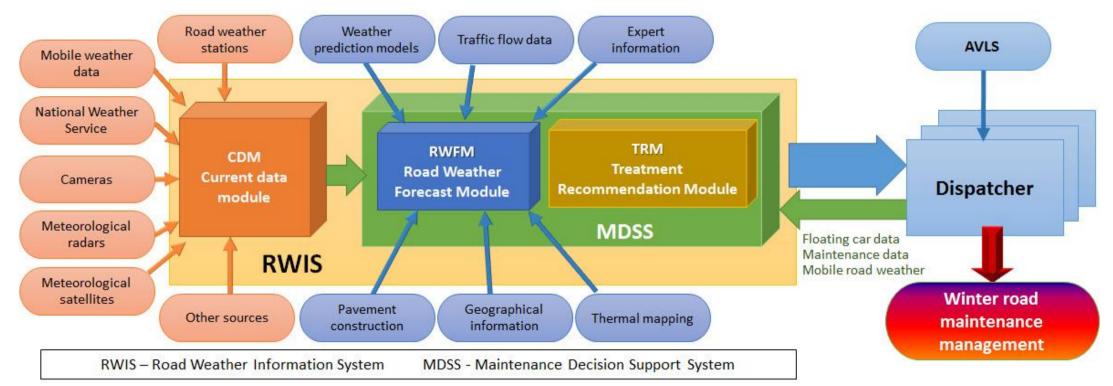
(Deffner et al. 2012)

WINTER MAINTENANCE – PHYSICAL/MATERIAL ASPECTS

- Clearing the path
 - Different equipment
 - Plows, brushes, blowers
- Storage of snow
 - Snow accommodation areas along roads
 - Design!
 - Haulage of snow

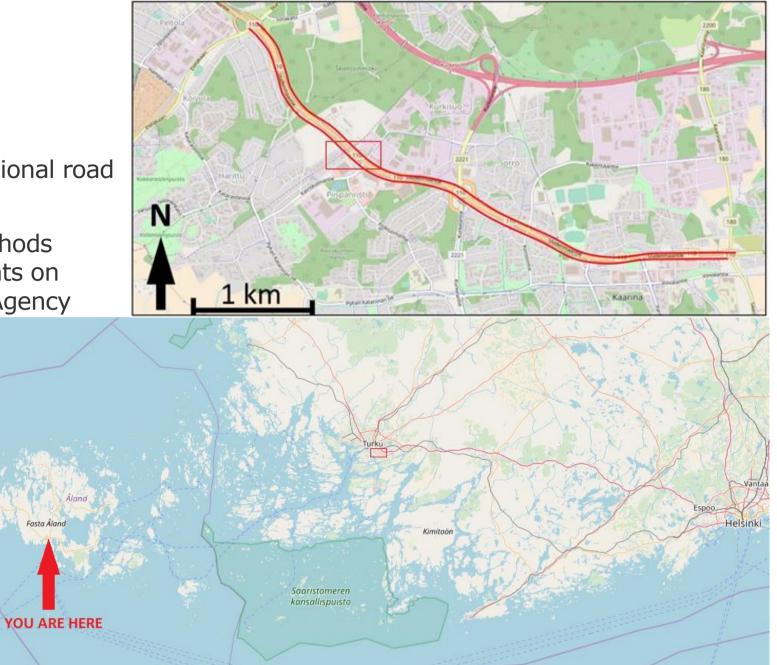
- Different chemical ice melters
 - Rock-salt the cheapest, and thereby most common
 - Different environmental impacts
 - Corrosion
 - Application form
- Gritting
 - Different materials
- Additives help limiting negative impacts
 - (Sugar) beet juice
 - Brines
 - Molasses

WINTER MAINTENANCE – PRIORITIZATION AND CONTRACT MODELS


- Routes are maintained in specific order according to their importance to traffic
- Contract models around the world
 - Snow limits
 - Action times
 - Procedure times
 - Maintenance methods
 - Equipment control

(Finnish Transport Agency, 2018)

WINTER MAINTENANCE – INTELLIGENT MAINTENANCE MANAGEMENT


- RSI
- ROSTMOS

(Kociánová, 2015)

CASE STUDY

- Walking and cycling paths of Regional road 110 between Turku and Kaarina
- Current winter maintenance methods according to "Quality requirements on highways" by Finnish Transport Agency
- January 22nd to March 4th

(Modified from OpenStreetMap, 2018)

CASE STUDY – WEATHER SENSOR


- STARWIS weather sensor
 - Surface temperature
 - Relative humidity
 - Dew point
 - Friction
 - Ice percentage
 - Road status
- MARWIS
 - +Ambient temperature

CASE STUDY – TRAFFIC COUNTING

- ViaCount
 - Doppler radar
 - Two-directional detection
 - Counting bicycles and pedestrians
- Manual counting once a week

(Modified from OpenStreetMap, 2018)

CASE STUDY – SURVEY

- Questions about moving habits, evaluations of weather, maintenance etc. factors
- Answering
 - Webropol
 - Form on site
- Advertising
 - ELY-centre web page
 - Local newspapers
 - Social media

7. How strongly do you experience following winter characteristics?

- 1 = no effect, 5 = prevents me from cycling/walking.
- Temperature
- Wind
- Precipitation
- Darkness
- Slipperiness
- Snow on cycling/walking path
- Snow blocking visibility
- Rutted cycling path (only for cyclists)
- Other, please specify

8. How do you evaluate following characteristics of the cycling/walking path between Turku and <u>Kaarina</u>?

1=very poor, 5 very good

- The condition of the pavement
- Lighting
- Cycling facilities / taking pedestrians into account
- Safety
- Overall review of the cycling path (only for cyclists)

9. How do you evaluate following parts of winter maintenance on the cycling/walking paths between Turku and <u>Kaarina</u>?

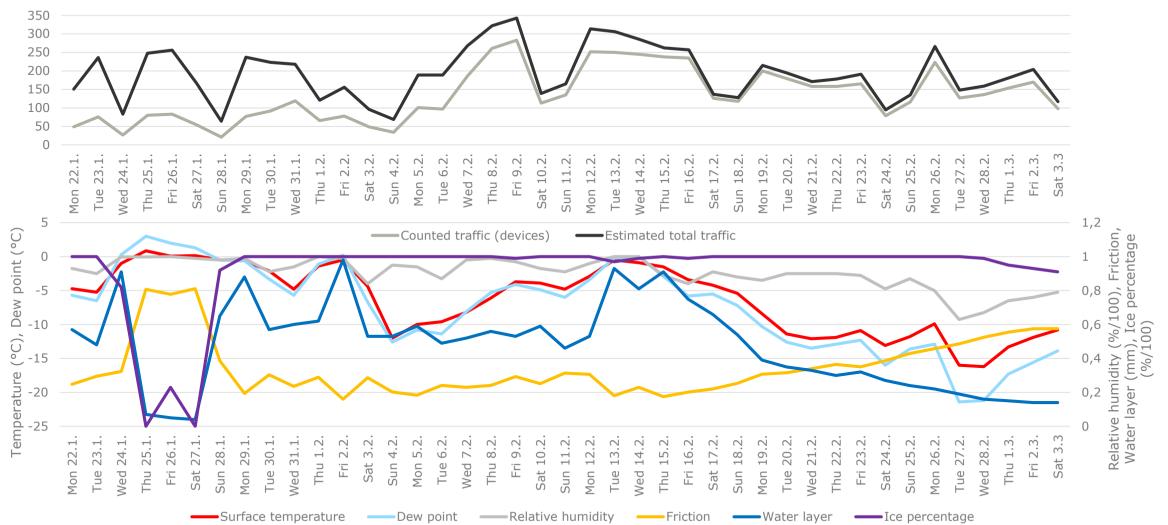
1=very poor, 5= very good

- Result of snow removal
- Timing of snow removal
- Accommodation of snow
- Skid control methods
- Skid control results
- Skid control timing

10. How would you develop winter cycling/walking conditions?

Checkbox answers:

- Different snow removal methods (for example snow blower, brush)
- Use of salt and/or other skid control methods
- Other, please specify


11. If the things you mentioned earlier were fixed, how often do you believe you would cycle / how often would you make walking trips during the winter season?

- Five days a week or more often
- On 2-4 days a week
- One day a week
- Several times in a month
- Several times in the season
- Less

CASE STUDY – RESULTS

CASE STUDY – SURVEY RESULTS

- Total of 353 answers, of which 57 as a pedestrian, 296 as cyclists.
- Winter reduced the number of trips more among cyclists than pedestrians
- Pedestrians evaluated wintery factors to be more considerable barriers on mode choice than cyclists (exception: snow)
- Cyclists evaluated the case study location and its winter maintenance more positively than pedestrians
- Majority of pedestrians and cyclists would develop winter maintenance with various methods
 - Roughly half of pedestrians would use different friction enhancing methods. 43% of cyclists would also.
 - More efficient snow and slush removal was mentioned frequently.
 - Cyclists' attitudes towards salt were surprisingly positive. Also ending the use of grit was often suggested. Pedestrians also mentioned decreasing the amount of salt used.
- Around 50% would consider information about road condition useful, about performed maintenance as much as 80%
 - More than half believe that such information providing service would increase the number of walking or cycling trips made

DISCUSSION - RESULTS

Phenomenon	Case study	Survey result	Previous studies
		(opinion)	
Seasonal vol- umes	Significant reduction among cyclists (based on traffic volume counting of 2015).	Pedestrians: minor re- duction in winter Cyclists: Considera- ble reduction in win- ter	Pedestrians: noticeable in- crease in winter Cyclists: Considerable de- crease in winter
Temperature	Cold temperatures reduce the number of pedestrians and cyclists	Pedestrians: low im- pact Cyclists: low impact	Pedestrians: increase in T de- creases activity Cyclists: increase in T in- creases activity However not the only factor in winter
Precipitation	Strong, reducing impact	Pedestrians: moderate barrier Cyclists: moderate barrier	Reduces the number of pedes- trians and cyclists moderately. Depends also on study period.
Snow on road	Considerable barrier to- gether with precipitation	Major barrier for both travel modes	Major barrier
Slipperiness	Strong, reducing impact, significant correlation only during change in friction.	Pedestrians: major barrier Cyclists: considerable barrier	Considerable barrier
Traffic envi- ronment		Safety of traffic envi- ronment and fluency of network are im- portant facilitators. Separation of modes is desired.	Safety of traffic environment and fluency of network are im- portant facilitators.

DISCUSSION – RECOMMENDATIONS, TRAFFIC ENVIRONMENT

- Repairing the pavement where required
- Changing and/or complementing certain segments on the route, improving the continuity of the route
- Separation of traffic modes
- Walking and cycling specific facilities increasing safety and comfort
- Planning of underpasses and intersections with maintenance in consideration
- Accommodation of snow

DISCUSSION – RECOMMENDATIONS, WINTER MAINTENANCE

- Ensuring the fulfillment of contracts, improved communication between different organizations and stricter enforcement
- Changeable snow removal tools for different road surface conditions
- Coordinated friction and pollution control of road surface
- Proactive maintenance before snowfall for salt use minimization
- Alternative deicer materials
- Storage and depot locations, and utilization and updating of stock
- Utilization of existing, and development of maintenance management support systems

DISCUSSION – RECOMMENDATIONS FOR LONGER TIME PERIOD

- Increasing the priority of maintenance on pedestrian and cycling paths
- Adaptivity for the quality requirements
- Increasing winter maintenance budget
- Simplifying administrative procedures
- Development of contract models
- Implementation of road weather data collection systems

DISCUSSION – RECOMMENDATIONS, INFORMATION SYSTEMS

- Information about winter maintenance for road users
- Information systems to improve the efficiency of winter maintenance
- Road weather data

• Campaigns

CONLCLUSIONS

- Keep the infrastructure in good condition
- Follow the contracts and agreements
- Adapt to local conditions
- Provide safe and attractive facilities for cyclists and pedestrians
- Separate modes

REFERENCES

- Deffner, J., Hefter, T., Rudolph, C., & Ziel, T. 2012. Handbook on cycling inclusive plan-ning and promotion. Frankfurt/Hamburg, Germany. [Cited 13 May 2018] Available at: http://www.mobile2020.eu/fileadmin/Handbook/M2020_Handbook_EN.pdf
- Finnish Transport Agency. Winter maintenance classes of highways. [Internet-page]. [Cited 12 Sep 2018]. Available at: https://www.liikennevirasto.fi/tieverkko/kunnossapito/talvihoito
- Kociánová, A. 2015. The intelligent winter road maintenance management in Slovak con-ditions. Procedia Engineering. [Electronic journal]. Vol. 111. P. 410-419. [Cited 6 Feb 2018]. ISSN 1877-7058. Available at: http://www.sciencedirect.com/science/arti-cle/pii/S1877705815013582
- Lufft. 2017. User Manual MARWIS / StaRWIS. [User manual]. Fellbach, Germany. 56 p. [Cited 7 Mar 2018]. Available at: https://www.lufft.com/download/manual-lufft-marwis-starwis-en/
- OpenStreetMap Foundation. (2018). [Map service]. [Cited Mar 2018]. Available at: https://www.openstreetmap.org
- Peltonen, P. The impacts of traffic environment, weather, road conditions and maintenance on walking and cycling travel. [Master's thesis]. Available at https://aaltodoc.aalto.fi/handle/123456789/32417
- Somerpalo, S., Kallio, R., Lehto, H., & Krankka, A. 2015. Pyöräilyanalyysi henkilöliiken-netutkimuksen aineistosta. [Study]. Liikenneviraston tutkimuksia ja selvityksiä 32/2015. Helsinki: Liikennevirasto. 70 p. [Cited 1 Feb 2018]. ISSN 1798-6664. Available at: https://julkaisut.liikennevirasto.fi/pdf8/lts_2015-32_pyorailyanalyysi_henkiloliikennetutki-muksen_web.pdf

PIETARI.PELTONEN@RAMBOLL.FI

QUESTIONS?

THE STUDY REPORT AVAILABLE AT HTTPS://WWW.DORIA.FI/HANDLE/10024/159471 (IN FINNISH)

THANK YOU!